If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16-16z+z^2=0
a = 1; b = -16; c = +16;
Δ = b2-4ac
Δ = -162-4·1·16
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{3}}{2*1}=\frac{16-8\sqrt{3}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{3}}{2*1}=\frac{16+8\sqrt{3}}{2} $
| g-9=12 | | 145.2x0.3= | | -8(1-11p)-20p=-63+14p | | 3y=14-(-14) | | –6v–6(–2v–4)=84 | | -588+7x=-21x | | 3x+6(2x–3)=72 | | 50x-15=20 | | -588+7x=21x | | -4x-44=20 | | 13x+18=7(4x+9) | | 15/x=27/36 | | 4n-9n+6=0 | | s+8=17 | | 7d–4(d+8)=–8 | | 1/6(18x+24)=2x+8 | | -x-1=2x+3 | | 7x+54=92 | | 37=6x+5 | | X(26)+4y=54 | | 2x²+5x+10=0 | | -6c+8=32 | | x/5=80/50 | | 5x-12=-97 | | X+x+5+2x=29 | | 17.5÷x=7 | | −4.5+p/6=18.9 | | 8x+14=-8 | | 2x+5+7=-10x | | 1/7b=5=-2 | | |2x-9|=-3 | | 9z-24=40+z |